Connecting Researchers; Nurturing Innovations

DISPERSION PATTERN OF SULFUR DIOXIDE FROM MULTIPLE INDUSTRIAL POINT SOURCES IN THE URBAN COASTAL AREA OF TROPICAL REGION

R. JAYAMURUGAN ${ }^{1}$, B. KUMARAVEL ${ }^{2}$, S. PALANIVELRAJA ${ }^{3}$ \& M. P. CHOCKALINGAM ${ }^{4}$
${ }^{1}$ Research Scholar, Department of Civil Engineering, Annamalai University, Chidambaram, India
${ }^{2}$ Assistant Professor, Department of Civil Engineering, Annamalai University, Chidambaram, India ${ }^{3}$ Professor, Department of Civil Engineering, Annamalai University, Chidambaram, India
${ }^{4}$ Professor, Department of Civil Engineering, Vel Tech Dr. RR \& Dr. SR Technical University, Avadi, Chennai, India

Abstract

This study analyze the spatial dispersion pattern of Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ from 192 industrial stacks in Chennai, a coastal city in India, located in the tropical zone. Industrial Sources Complex Short Term Model version 3(ISCST3) was performed for 12 months (June-2011 to July-2012) and 16 wind direction sectors of 22.5° resolution were employed. The spatial dispersion pattern of SO_{2} revealed that it varies every month, depends on the prevailing seasonal and meteorological conditions. August and September in the Pre-monsoon season, and November in the monsoon season were the critical periods receiving maximum range of ground-level concentrations of $\mathrm{SO}_{2}\left(27 \mu \mathrm{~g} / \mathrm{m}^{3}\right.$ to $\left.30 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$ due to steady wind pattern. The unsteadiness prevailing in the wind direction due to transition of monsoon season, during October and February, enhance the dispersion and drastically reduces the ground-level concentration of SO_{2} to $17 \mu \mathrm{~g} / \mathrm{m}^{3}$. The results of the study demonstrate that much fluctuations in the wind direction not only prevents over dumping of pollutants in a particular downwind sectors, but also enhance the areas of dispersion and reduces the ambient concentration level of pollutants.

KEYWORDS: Wind Direction Sector, Ground-Level Concentration, Sulphur Dioxide $\left(\mathrm{SO}_{2}\right)$

